完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | Takhtajan, LA | en_US |
dc.contributor.author | Teo, LP | en_US |
dc.date.accessioned | 2014-12-08T15:40:32Z | - |
dc.date.available | 2014-12-08T15:40:32Z | - |
dc.date.issued | 2003-08-01 | en_US |
dc.identifier.issn | 0010-3616 | en_US |
dc.identifier.uri | http://dx.doi.org/10.1007/s00220-003-0878-5 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/27669 | - |
dc.description.abstract | We rigorously define the Liouville action functional for the finitely generated, purely loxodromic quasi-Fuchsian group using homology and cohomology double complexes naturally associated with the group action. We prove that classical action - the critical value of the Liouville action functional, considered as a function on the quasi-Fuchsian deformation space, is an antiderivative of a 1-form given by the difference of Fuchsian and quasi-Fuchsian projective connections. This result can be considered as global quasi-Fuchsian reciprocity which implies McMullen's quasi-Fuchsian reciprocity. We prove that the classical action is a Kahler potential of the Weil-Petersson metric. We also prove that the Liouville action functional satisfies holography principle, i.e., it is a regularized limit of the hyperbolic volume of a 3-manifold associated with a quasi-Fuchsian group. We generalize these results to a large class of Kleinian groups including finitely generated, purely loxodromic Schottky and quasi-Fuchsian groups, and their free combinations. | en_US |
dc.language.iso | en_US | en_US |
dc.title | Liouville action and Weil-Petersson metric on deformation spaces, global Kleinian reciprocity and holography | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1007/s00220-003-0878-5 | en_US |
dc.identifier.journal | COMMUNICATIONS IN MATHEMATICAL PHYSICS | en_US |
dc.citation.volume | 239 | en_US |
dc.citation.issue | 1-2 | en_US |
dc.citation.spage | 183 | en_US |
dc.citation.epage | 240 | en_US |
dc.contributor.department | 應用數學系 | zh_TW |
dc.contributor.department | Department of Applied Mathematics | en_US |
dc.identifier.wosnumber | WOS:000184503900008 | - |
dc.citation.woscount | 23 | - |
顯示於類別: | 期刊論文 |