完整後設資料紀錄
DC 欄位語言
dc.contributor.authorTakhtajan, LAen_US
dc.contributor.authorTeo, LPen_US
dc.date.accessioned2014-12-08T15:40:32Z-
dc.date.available2014-12-08T15:40:32Z-
dc.date.issued2003-08-01en_US
dc.identifier.issn0010-3616en_US
dc.identifier.urihttp://dx.doi.org/10.1007/s00220-003-0878-5en_US
dc.identifier.urihttp://hdl.handle.net/11536/27669-
dc.description.abstractWe rigorously define the Liouville action functional for the finitely generated, purely loxodromic quasi-Fuchsian group using homology and cohomology double complexes naturally associated with the group action. We prove that classical action - the critical value of the Liouville action functional, considered as a function on the quasi-Fuchsian deformation space, is an antiderivative of a 1-form given by the difference of Fuchsian and quasi-Fuchsian projective connections. This result can be considered as global quasi-Fuchsian reciprocity which implies McMullen's quasi-Fuchsian reciprocity. We prove that the classical action is a Kahler potential of the Weil-Petersson metric. We also prove that the Liouville action functional satisfies holography principle, i.e., it is a regularized limit of the hyperbolic volume of a 3-manifold associated with a quasi-Fuchsian group. We generalize these results to a large class of Kleinian groups including finitely generated, purely loxodromic Schottky and quasi-Fuchsian groups, and their free combinations.en_US
dc.language.isoen_USen_US
dc.titleLiouville action and Weil-Petersson metric on deformation spaces, global Kleinian reciprocity and holographyen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s00220-003-0878-5en_US
dc.identifier.journalCOMMUNICATIONS IN MATHEMATICAL PHYSICSen_US
dc.citation.volume239en_US
dc.citation.issue1-2en_US
dc.citation.spage183en_US
dc.citation.epage240en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000184503900008-
dc.citation.woscount23-
顯示於類別:期刊論文


文件中的檔案:

  1. 000184503900008.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。