完整後設資料紀錄
DC 欄位語言
dc.contributor.authorLi, TKen_US
dc.contributor.authorTsai, CHen_US
dc.contributor.authorTan, JJMen_US
dc.contributor.authorHsu, LHen_US
dc.date.accessioned2014-12-08T15:40:36Z-
dc.date.available2014-12-08T15:40:36Z-
dc.date.issued2003-07-31en_US
dc.identifier.issn0020-0190en_US
dc.identifier.urihttp://dx.doi.org/10.1016/S0020-0190(03)00258-8en_US
dc.identifier.urihttp://hdl.handle.net/11536/27697-
dc.description.abstractA bipartite graph is bipancyclic if it contains a cycle of every even length from 4 to I V(G) I inclusive. It has been shown that Q(n) is bipancyclic if and only if n greater than or equal to 2. In this paper, we improve this result by showing that every edge of Q(n) - E' lies on a cycle of every even length from 4 to V(G) inclusive where E' is a subset of E(Q(n)) with E' less than or equal to n - 2. The result is proved to be optimal. To get this result, we also prove that there exists a path of length I joining any two different vertices x and y of Qn when h (x, y) less than or equal to l less than or equal to V(G) - 1 and l - h (x, y) is even where It (x, y) is the Hamming distance between x and y. (C) 2003 Elsevier Science B.V. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjecthypercubeen_US
dc.subjectHamiltonianen_US
dc.subjectbipancyclicen_US
dc.subjectbipanconnecteden_US
dc.subjectinterconnection networksen_US
dc.titleBipanconnectivity and edge-fault-tolerant bipancyclicity of hypercubesen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/S0020-0190(03)00258-8en_US
dc.identifier.journalINFORMATION PROCESSING LETTERSen_US
dc.citation.volume87en_US
dc.citation.issue2en_US
dc.citation.spage107en_US
dc.citation.epage110en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000183573100009-
dc.citation.woscount70-
顯示於類別:期刊論文


文件中的檔案:

  1. 000183573100009.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。