Full metadata record
DC FieldValueLanguage
dc.contributor.authorLi, YMen_US
dc.date.accessioned2014-12-08T15:40:41Z-
dc.date.available2014-12-08T15:40:41Z-
dc.date.issued2003-07-01en_US
dc.identifier.issn0010-4655en_US
dc.identifier.urihttp://dx.doi.org/10.1016/S0010-4655(03)00203-0en_US
dc.identifier.urihttp://hdl.handle.net/11536/27753-
dc.description.abstractVarious self-consistent semiconductor device simulation approaches require the solution of Poisson equation that describes the potential distribution for a specified doping profile (or charge density). In this paper, we solve the multi-dimensional semiconductor nonlinear Poisson equation numerically with the finite volume method and the monotone iterative method on a Linux-cluster. Based on the nonlinear property of the Poisson equation, the proposed method converges monotonically for arbitrary initial guesses. Compared with the Newton's iterative method, it is easy implementing, relatively robust and fast with much less computation time, and its algorithm is inherently parallel in large-scale computing. The presented method has been successfully implemented; the developed parallel nonlinear Poisson solver tested on a variety of devices shows it has good efficiency and robustness. Benchmarks are also included to demonstrate the excellent parallel performance of the method. (C) 2003 Elsevier B.V. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectPoisson equationen_US
dc.subject3D semiconductor device simulationen_US
dc.subjectmonotone iterative techniqueen_US
dc.subjectparallel computationen_US
dc.titleA parallel monotone iterative method for the numerical solution of multi-dimensional semiconductor Poisson equationen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/S0010-4655(03)00203-0en_US
dc.identifier.journalCOMPUTER PHYSICS COMMUNICATIONSen_US
dc.citation.volume153en_US
dc.citation.issue3en_US
dc.citation.spage359en_US
dc.citation.epage372en_US
dc.contributor.department友訊交大聯合研發中心zh_TW
dc.contributor.departmentD Link NCTU Joint Res Ctren_US
dc.identifier.wosnumberWOS:000184355700003-
dc.citation.woscount29-
Appears in Collections:Articles


Files in This Item:

  1. 000184355700003.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.