Full metadata record
DC FieldValueLanguage
dc.contributor.authorCHUU, DSen_US
dc.contributor.authorLEE, YKen_US
dc.date.accessioned2019-04-03T06:39:09Z-
dc.date.available2019-04-03T06:39:09Z-
dc.date.issued1993-12-01en_US
dc.identifier.issn1050-2947en_US
dc.identifier.urihttp://dx.doi.org/10.1103/PhysRevA.48.4175en_US
dc.identifier.urihttp://hdl.handle.net/11536/2775-
dc.description.abstractThe low-lying energy levels of a hydrogen atom in a uniformly strong magnetic field B (B < 10(10) G) are calculated in a simple perturbative variational approach which combines the spirit of the variational principle and the conventional pertubation method. The total Hamiltonian is separated into four parts: a one-dimensional hydrogen-atom system; a two-dimensional harmonic-oscillator system; a z-component angular-momentum operator; and a perturbation part which contains an undetermined variable parameter but is independent of B. The first three parts can be solved exactly. The variational parameter introduced in the Hamiltonian can be determined by requiring the energy-correction expansion to converge as fast as possible. It is found that our calculated ground-state energy is in good agreement with those obtained by the previous works that used the wave-function-expansion approach for high magnetic fields up to gamma = 7 (i.e., 10(10) G for atoms).en_US
dc.language.isoen_USen_US
dc.titleHYDROGEN-ATOM IN A HIGH MAGNETIC-FIELDen_US
dc.typeArticleen_US
dc.identifier.doi10.1103/PhysRevA.48.4175en_US
dc.identifier.journalPHYSICAL REVIEW Aen_US
dc.citation.volume48en_US
dc.citation.issue6en_US
dc.citation.spage4175en_US
dc.citation.epage4181en_US
dc.contributor.department物理研究所zh_TW
dc.contributor.departmentInstitute of Physicsen_US
dc.identifier.wosnumberWOS:A1993MM34700030en_US
dc.citation.woscount4en_US
Appears in Collections:Articles


Files in This Item:

  1. 82257a09b9bb1d4fb6eec10b9d9def67.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.