Full metadata record
DC FieldValueLanguage
dc.contributor.authorTsai, HKen_US
dc.contributor.authorYang, JMen_US
dc.contributor.authorTsai, YFen_US
dc.contributor.authorKao, CYen_US
dc.date.accessioned2014-12-08T15:40:48Z-
dc.date.available2014-12-08T15:40:48Z-
dc.date.issued2003-06-01en_US
dc.identifier.issn0305-215Xen_US
dc.identifier.urihttp://dx.doi.org/10.1080/0305215031000109622en_US
dc.identifier.urihttp://hdl.handle.net/11536/27818-
dc.description.abstractThis paper proposes a genetic algorithm, called the heterogeneous selection genetic algorithm (HSGA), integrating local and global strategies via family competition and edge similarity, for the traveling salesman problem (TSP). Local strategies include neighbor-join mutation and family competition, and global strategies consist of heterogeneous pairing selection and edge assembly crossover. Based on the mechanisms of preserving and adding edges, the search behaviors of neighbor-join mutation and edge assembly crossover are studied. The proposed method has been implemented and applied to 17 well-known TSPs whose numbers of cities range from 101 to 13,509. Experimental results indicate that this approach, although somewhat slower, performs very robustly and is very competitive with other approaches in the best surveys. This approach is able to find the optimum, and the average solution quality is within 0.00048 above the optima of each test problem.en_US
dc.language.isoen_USen_US
dc.subjectedge assembly crossoveren_US
dc.subjectheterogeneous pairing selectionen_US
dc.subjectfamily competitionen_US
dc.subjectgenetic algorithmen_US
dc.subjectneighbor-join mutationen_US
dc.subjecttraveling salesman problemen_US
dc.titleHeterogeneous selection genetic algorithms for traveling salesman problemsen_US
dc.typeArticleen_US
dc.identifier.doi10.1080/0305215031000109622en_US
dc.identifier.journalENGINEERING OPTIMIZATIONen_US
dc.citation.volume35en_US
dc.citation.issue3en_US
dc.citation.spage297en_US
dc.citation.epage311en_US
dc.contributor.department生物科技學系zh_TW
dc.contributor.department生物資訊及系統生物研究所zh_TW
dc.contributor.departmentDepartment of Biological Science and Technologyen_US
dc.contributor.departmentInstitude of Bioinformatics and Systems Biologyen_US
dc.identifier.wosnumberWOS:000183911700005-
dc.citation.woscount4-
Appears in Collections:Articles


Files in This Item:

  1. 000183911700005.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.