完整後設資料紀錄
DC 欄位語言
dc.contributor.authorChiang, TLen_US
dc.contributor.authorSu, CTen_US
dc.date.accessioned2014-12-08T15:40:52Z-
dc.date.available2014-12-08T15:40:52Z-
dc.date.issued2003-05-16en_US
dc.identifier.issn0377-2217en_US
dc.identifier.urihttp://dx.doi.org/10.1016/S0377-2217(02)00258-8en_US
dc.identifier.urihttp://hdl.handle.net/11536/27858-
dc.description.abstractThis paper focuses on an integated optimization problem that involves multiple qualitative and quantitative responses in the thin quad flat pack (TQFP) molding process. A fuzzy quality loss function (FQLF) is first applied to the qualitative responses., since the molding defects cannot be simply represented by the relationship between molding conditions and mathematical models. Neural network is then used to provide a nonlinear relationship between process parameters and responses. A genetic algorithm together with exponential desirability function is employed to determine the optimal parameter setting for TQFP encapsulation. The proposed method was implemented in a semiconductor assembly factory in Taiwan. The results from this study have proved the feasibility of the proposed approach. (C) 2002 Elsevier Science B.V. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectthin quad flat packen_US
dc.subjectfuzzy quality loss functionen_US
dc.subjectneural networken_US
dc.subjectexponential desirability functionen_US
dc.subjectgenetic algorithmsen_US
dc.titleOptimization of TQFP molding process using neuro-fuzzy-GA approachen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/S0377-2217(02)00258-8en_US
dc.identifier.journalEUROPEAN JOURNAL OF OPERATIONAL RESEARCHen_US
dc.citation.volume147en_US
dc.citation.issue1en_US
dc.citation.spage156en_US
dc.citation.epage164en_US
dc.contributor.department工業工程與管理學系zh_TW
dc.contributor.departmentDepartment of Industrial Engineering and Managementen_US
dc.identifier.wosnumberWOS:000180891500013-
dc.citation.woscount18-
顯示於類別:期刊論文


文件中的檔案:

  1. 000180891500013.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。