Full metadata record
DC FieldValueLanguage
dc.contributor.authorLu, CLen_US
dc.contributor.authorPeng, SLen_US
dc.contributor.authorTang, CYen_US
dc.date.accessioned2014-12-08T15:40:53Z-
dc.date.available2014-12-08T15:40:53Z-
dc.date.issued2003-05-14en_US
dc.identifier.issn0304-3975en_US
dc.identifier.urihttp://dx.doi.org/10.1016/S0304-3975(02)00594-7en_US
dc.identifier.urihttp://hdl.handle.net/11536/27870-
dc.description.abstractAn efficient minus (respectively, signed) dominating function of a graph G = (V,E) is a function f:V --> {-1,0,1} (respectively, {-1,1}) such that Sigma(uis an element ofN[nu]) f(u) = I for all nu is an element of V, where N [nu] = {nu} boolean OR {u (u, nu) is an element of E}. The efficient minus (respectively, signed) domination problem is to find an efficient minus (respectively, signed) dominating function of G. In this paper, we show that the efficient minus (respectively, signed) domination problem is NP-complete on chordal graphs, chordal bipartite graphs, planar bipartite graphs and planar graphs of maximum degree 4 (respectively, on chordal graphs). Based on the forcing property on blocks of vertices and automata theory, we provide a uniform approach to show that in a special class of interval graphs, every graph (respectively, every graph with no vertex of odd degree) has an efficient minus (respectively, signed) dominating function. We also give linear-time algorithms to find these functions. Besides, we show that the efficient minus domination problem is equivalent to the efficient domination problem on trees. (C) 2002 Elsevier Science B.V. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectefficient minus dominationen_US
dc.subjectefficient signed dominationen_US
dc.subjectchordal graphsen_US
dc.subjectchordal bipartite graphsen_US
dc.subjectplanar bipartite graphsen_US
dc.subjectchain interval graphsen_US
dc.titleEfficient minus and signed domination in graphsen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/S0304-3975(02)00594-7en_US
dc.identifier.journalTHEORETICAL COMPUTER SCIENCEen_US
dc.citation.volume301en_US
dc.citation.issue1-3en_US
dc.citation.spage381en_US
dc.citation.epage397en_US
dc.contributor.department生物科技學系zh_TW
dc.contributor.departmentDepartment of Biological Science and Technologyen_US
dc.identifier.wosnumberWOS:000182912100018-
dc.citation.woscount1-
Appears in Collections:Articles


Files in This Item:

  1. 000182912100018.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.