完整後設資料紀錄
DC 欄位語言
dc.contributor.authorLu, CLen_US
dc.contributor.authorPeng, SLen_US
dc.contributor.authorTang, CYen_US
dc.date.accessioned2014-12-08T15:40:53Z-
dc.date.available2014-12-08T15:40:53Z-
dc.date.issued2003-05-14en_US
dc.identifier.issn0304-3975en_US
dc.identifier.urihttp://dx.doi.org/10.1016/S0304-3975(02)00594-7en_US
dc.identifier.urihttp://hdl.handle.net/11536/27870-
dc.description.abstractAn efficient minus (respectively, signed) dominating function of a graph G = (V,E) is a function f:V --> {-1,0,1} (respectively, {-1,1}) such that Sigma(uis an element ofN[nu]) f(u) = I for all nu is an element of V, where N [nu] = {nu} boolean OR {u (u, nu) is an element of E}. The efficient minus (respectively, signed) domination problem is to find an efficient minus (respectively, signed) dominating function of G. In this paper, we show that the efficient minus (respectively, signed) domination problem is NP-complete on chordal graphs, chordal bipartite graphs, planar bipartite graphs and planar graphs of maximum degree 4 (respectively, on chordal graphs). Based on the forcing property on blocks of vertices and automata theory, we provide a uniform approach to show that in a special class of interval graphs, every graph (respectively, every graph with no vertex of odd degree) has an efficient minus (respectively, signed) dominating function. We also give linear-time algorithms to find these functions. Besides, we show that the efficient minus domination problem is equivalent to the efficient domination problem on trees. (C) 2002 Elsevier Science B.V. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectefficient minus dominationen_US
dc.subjectefficient signed dominationen_US
dc.subjectchordal graphsen_US
dc.subjectchordal bipartite graphsen_US
dc.subjectplanar bipartite graphsen_US
dc.subjectchain interval graphsen_US
dc.titleEfficient minus and signed domination in graphsen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/S0304-3975(02)00594-7en_US
dc.identifier.journalTHEORETICAL COMPUTER SCIENCEen_US
dc.citation.volume301en_US
dc.citation.issue1-3en_US
dc.citation.spage381en_US
dc.citation.epage397en_US
dc.contributor.department生物科技學系zh_TW
dc.contributor.departmentDepartment of Biological Science and Technologyen_US
dc.identifier.wosnumberWOS:000182912100018-
dc.citation.woscount1-
顯示於類別:期刊論文


文件中的檔案:

  1. 000182912100018.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。