Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Chang, JC | en_US |
dc.contributor.author | Chen, RJ | en_US |
dc.contributor.author | Klove, T | en_US |
dc.contributor.author | Tsai, SC | en_US |
dc.date.accessioned | 2014-12-08T15:41:08Z | - |
dc.date.available | 2014-12-08T15:41:08Z | - |
dc.date.issued | 2003-04-01 | en_US |
dc.identifier.issn | 0018-9448 | en_US |
dc.identifier.uri | http://dx.doi.org/10.1109/TIT.2003.809507 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/27984 | - |
dc.description.abstract | Mappings of the set of binary vectors of a fixed length to the set of permutations of the same length are useful for the construction of permutation codes. In this correspondence, several explicit constructions of such mappings preserving or increasing the Hamming distance are given. Some applications are given to illustrate the usefulness (if the construction. In particular, a new lower bound on the maximal size of permutation arrays (PAs) is given. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | code constructions | en_US |
dc.subject | distance | en_US |
dc.subject | mapping | en_US |
dc.subject | permutation arrays (PAs) | en_US |
dc.title | Distance-preserving mappings from binary vectors to permutations | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1109/TIT.2003.809507 | en_US |
dc.identifier.journal | IEEE TRANSACTIONS ON INFORMATION THEORY | en_US |
dc.citation.volume | 49 | en_US |
dc.citation.issue | 4 | en_US |
dc.citation.spage | 1054 | en_US |
dc.citation.epage | 1059 | en_US |
dc.contributor.department | 資訊工程學系 | zh_TW |
dc.contributor.department | Department of Computer Science | en_US |
dc.identifier.wosnumber | WOS:000182169400025 | - |
dc.citation.woscount | 39 | - |
Appears in Collections: | Articles |
Files in This Item:
If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.