Full metadata record
DC FieldValueLanguage
dc.contributor.authorChang, JCen_US
dc.contributor.authorChen, RJen_US
dc.contributor.authorKlove, Ten_US
dc.contributor.authorTsai, SCen_US
dc.date.accessioned2014-12-08T15:41:08Z-
dc.date.available2014-12-08T15:41:08Z-
dc.date.issued2003-04-01en_US
dc.identifier.issn0018-9448en_US
dc.identifier.urihttp://dx.doi.org/10.1109/TIT.2003.809507en_US
dc.identifier.urihttp://hdl.handle.net/11536/27984-
dc.description.abstractMappings of the set of binary vectors of a fixed length to the set of permutations of the same length are useful for the construction of permutation codes. In this correspondence, several explicit constructions of such mappings preserving or increasing the Hamming distance are given. Some applications are given to illustrate the usefulness (if the construction. In particular, a new lower bound on the maximal size of permutation arrays (PAs) is given.en_US
dc.language.isoen_USen_US
dc.subjectcode constructionsen_US
dc.subjectdistanceen_US
dc.subjectmappingen_US
dc.subjectpermutation arrays (PAs)en_US
dc.titleDistance-preserving mappings from binary vectors to permutationsen_US
dc.typeArticleen_US
dc.identifier.doi10.1109/TIT.2003.809507en_US
dc.identifier.journalIEEE TRANSACTIONS ON INFORMATION THEORYen_US
dc.citation.volume49en_US
dc.citation.issue4en_US
dc.citation.spage1054en_US
dc.citation.epage1059en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000182169400025-
dc.citation.woscount39-
Appears in Collections:Articles


Files in This Item:

  1. 000182169400025.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.