Full metadata record
DC FieldValueLanguage
dc.contributor.authorHu, YCen_US
dc.contributor.authorChen, RSen_US
dc.contributor.authorTzeng, GHen_US
dc.date.accessioned2014-12-08T15:41:09Z-
dc.date.available2014-12-08T15:41:09Z-
dc.date.issued2003-04-01en_US
dc.identifier.issn0950-7051en_US
dc.identifier.urihttp://dx.doi.org/10.1016/S0950-7051(02)00079-5en_US
dc.identifier.urihttp://hdl.handle.net/11536/28010-
dc.description.abstractFuzzy association rules described by the natural language are well suited for the thinking of human subjects and will help to increase the flexibility for supporting users in making decisions or designing the fuzzy systems. In this paper, a new algorithm named fuzzy grids based rules mining algorithm (FGBRMA) is proposed to generate fuzzy association rules from a relational database. The proposed algorithm consists of two phases: one to generate the large fuzzy grids, and the other to generate the fuzzy association rules. A numerical example is presented to illustrate a detailed process for finding the fuzzy association rules from a specified database, demonstrating the effectiveness of the proposed algorithm. (C) 2002 Elsevier Science B.V. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectdata miningen_US
dc.subjectfuzzy partitionen_US
dc.subjectassociation rulesen_US
dc.subjectdecision makingen_US
dc.titleDiscovering fuzzy association rules using fuzzy partition methodsen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/S0950-7051(02)00079-5en_US
dc.identifier.journalKNOWLEDGE-BASED SYSTEMSen_US
dc.citation.volume16en_US
dc.citation.issue3en_US
dc.citation.spage137en_US
dc.citation.epage147en_US
dc.contributor.department科技管理研究所zh_TW
dc.contributor.departmentInstitute of Management of Technologyen_US
dc.identifier.wosnumberWOS:000181221200002-
dc.citation.woscount36-
Appears in Collections:Articles


Files in This Item:

  1. 000181221200002.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.