Full metadata record
DC FieldValueLanguage
dc.contributor.authorSu, CTen_US
dc.contributor.authorChiang, TLen_US
dc.date.accessioned2014-12-08T15:41:10Z-
dc.date.available2014-12-08T15:41:10Z-
dc.date.issued2003-04-01en_US
dc.identifier.issn0956-5515en_US
dc.identifier.urihttp://dx.doi.org/10.1023/A:1022959631926en_US
dc.identifier.urihttp://hdl.handle.net/11536/28013-
dc.description.abstractA critical aspect of wire bonding is the quality of the bonding strength that contributes the major part of yield loss to the integrated circuit assembly process. This paper applies an integrated approach using a neural networks and genetic algorithms to optimize IC wire bonding process. We first use a back-propagation network to provide the nonlinear relationship between factors and the response based on the experimental data from a semiconductor manufacturing company in Taiwan. Then, a genetic algorithms is applied to obtain the optimal factor settings. A comparison between the proposed approach and the Taguchi method was also conducted. The results demonstrate the superiority of the proposed approach in terms of process capability.en_US
dc.language.isoen_USen_US
dc.subjectintegrated circuit (IC)en_US
dc.subjectwire bondingen_US
dc.subjectneural networksen_US
dc.subjectback-propagation networken_US
dc.subjectgenetic algorithmsen_US
dc.titleOptimizing the IC wire bonding process using a neural networks/genetic algorithms approachen_US
dc.typeArticleen_US
dc.identifier.doi10.1023/A:1022959631926en_US
dc.identifier.journalJOURNAL OF INTELLIGENT MANUFACTURINGen_US
dc.citation.volume14en_US
dc.citation.issue2en_US
dc.citation.spage229en_US
dc.citation.epage238en_US
dc.contributor.department工業工程與管理學系zh_TW
dc.contributor.departmentDepartment of Industrial Engineering and Managementen_US
dc.identifier.wosnumberWOS:000181763500008-
dc.citation.woscount25-
Appears in Collections:Articles


Files in This Item:

  1. 000181763500008.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.