Full metadata record
DC FieldValueLanguage
dc.contributor.authorChen, SMen_US
dc.contributor.authorHsu, YSen_US
dc.contributor.authorPearn, WLen_US
dc.date.accessioned2014-12-08T15:41:15Z-
dc.date.available2014-12-08T15:41:15Z-
dc.date.issued2003-03-01en_US
dc.identifier.issn0233-1888en_US
dc.identifier.urihttp://dx.doi.org/10.1080/0233188021000004648en_US
dc.identifier.urihttp://hdl.handle.net/11536/28052-
dc.description.abstractProcess capability indices, providing numerical measures on process potential and process performance, have received substantial research attention. Most research assumes that the process is normally distributed and the process data are independent. In real-world applications such as chemical, soft drinks, or tobacco/cigaratte manufacturing processes, process data are often auto-correlated. In this paper, we consider the capability indices C-p, C-pk, C-pm, C-pmk for strictly m-dependent stationary processes. We investigate the statistical properties of their natural estimators. We derive the asymptotic distributions, and establish confidence intervals so that capability testing can be performed.en_US
dc.language.isoen_USen_US
dc.subjectprocess capability indexen_US
dc.subjectauto-correlated processen_US
dc.subjectasymptotic distributionen_US
dc.subjectstrictly m-dependent stationary processen_US
dc.titleCapability measures for m-dependent stationary processesen_US
dc.typeArticleen_US
dc.identifier.doi10.1080/0233188021000004648en_US
dc.identifier.journalSTATISTICSen_US
dc.citation.volume37en_US
dc.citation.issue2en_US
dc.citation.spage145en_US
dc.citation.epage168en_US
dc.contributor.department工業工程與管理學系zh_TW
dc.contributor.departmentDepartment of Industrial Engineering and Managementen_US
dc.identifier.wosnumberWOS:000183141500004-
dc.citation.woscount4-
Appears in Collections:Articles


Files in This Item:

  1. 000183141500004.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.