Full metadata record
DC FieldValueLanguage
dc.contributor.authorJou, Jen_US
dc.contributor.authorLiu, JLen_US
dc.date.accessioned2014-12-08T15:41:22Z-
dc.date.available2014-12-08T15:41:22Z-
dc.date.issued2003-02-01en_US
dc.identifier.issn0163-0563en_US
dc.identifier.urihttp://hdl.handle.net/11536/28145-
dc.description.abstractA residual type a posteriori error estimator is presented for the least-squares finite element solution of stationary incompressible Navier-Stokes equations based on the velocity-vorticity-pressure formulation with nonstandard and standard boundary conditions. Using the coerciveness of the corresponding Stokes operator and the special feature of the nonlineariry of the formulation, it is shown that,the error estimator is exact for the Stokes problem and is asymptotically exact for the Navier-Stokes problem in an energy-like norm. The resulting adaptive method is highly parallel because it does not require to assemble the global, matrix and the error estimation can be completely localized without using any information from neighboring elements.en_US
dc.language.isoen_USen_US
dc.titleA posteriori least-squares finite element error analysis for the Navier-Stokes equationsen_US
dc.typeArticleen_US
dc.identifier.journalNUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATIONen_US
dc.citation.volume24en_US
dc.citation.issue1-2en_US
dc.citation.spage67en_US
dc.citation.epage74en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000183361900005-
dc.citation.woscount1-
Appears in Collections:Articles


Files in This Item:

  1. 000183361900005.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.