完整後設資料紀錄
DC 欄位語言
dc.contributor.authorWang, WJen_US
dc.date.accessioned2014-12-08T15:41:25Z-
dc.date.available2014-12-08T15:41:25Z-
dc.date.issued2003en_US
dc.identifier.issn1369-7412en_US
dc.identifier.urihttp://hdl.handle.net/11536/28172-
dc.identifier.urihttp://dx.doi.org/10.1111/1467-9868.00385en_US
dc.description.abstractMany biomedical studies involve the analysis of multiple events. The dependence between the times to these end points is often of scientific interest. We investigate a situation when one end point is subject to censoring by the other. The model assumptions of Day and co-workers and Fine and co-workers are extended to more general structures where the level of association may vary with time. Two types of estimating function are proposed. Asymptotic properties of the proposed estimators are derived. Their finite sample performance is studied via simulations. The inference procedures are applied to two real data sets for illustration.en_US
dc.language.isoen_USen_US
dc.subjectarchimedean copula modelsen_US
dc.subjectbivariate survival analysisen_US
dc.subjectcompeting risken_US
dc.subjectcross-ratio functionen_US
dc.subjectestimating functionen_US
dc.subjectfrailty modelsen_US
dc.subjectidentifiabilityen_US
dc.subjectKendall's tauen_US
dc.subjectlog-rank statisticen_US
dc.subjectmultistate processen_US
dc.subjectsemi-competing-risks dataen_US
dc.subjectsemi parametric inferenceen_US
dc.titleEstimating the association parameter for copula models under dependent censoringen_US
dc.typeArticleen_US
dc.identifier.doi10.1111/1467-9868.00385en_US
dc.identifier.journalJOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGYen_US
dc.citation.volume65en_US
dc.citation.spage257en_US
dc.citation.epage273en_US
dc.contributor.department統計學研究所zh_TW
dc.contributor.departmentInstitute of Statisticsen_US
dc.identifier.wosnumberWOS:000180996800016-
dc.citation.woscount32-
顯示於類別:期刊論文


文件中的檔案:

  1. 000180996800016.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。