完整後設資料紀錄
DC 欄位語言
dc.contributor.authorLi, TSen_US
dc.contributor.authorSu, CTen_US
dc.contributor.authorChiang, TLen_US
dc.date.accessioned2014-12-08T15:41:26Z-
dc.date.available2014-12-08T15:41:26Z-
dc.date.issued2003-01-01en_US
dc.identifier.issn0166-3615en_US
dc.identifier.urihttp://dx.doi.org/10.1016/S0166-3615(02)00140-9en_US
dc.identifier.urihttp://hdl.handle.net/11536/28181-
dc.description.abstractThis study presents a neural-genetic algorithm to solve the selection problem of manufacturing process parameters. The proposed algorithm is a combination of artificial neural network (ANN) and genetic algorithms (GAs). In addition, the neural network is used to formulate a fitness function for predicting the value of the response based on the parameter settings. GAs then take the fitness function from the trained neural network to search for the optimal parameter combination. Owing to the most of manufactured products have more than one quality characteristic and the quality characteristics are generally correlated with each other, this study also proposes a desirability function to obtain a compromise, composite solution. A case study of how the silicon manufacturing process parameters are selected offline demonstrates the effectiveness of the proposed approach. (C) 2002 Elsevier Science B.V. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectartificial neural networken_US
dc.subjectgenetic algorithmen_US
dc.subjectmulti-response optimizationen_US
dc.subjectdesirability functionen_US
dc.subjectparameter selectionen_US
dc.titleApplying robust multi-response quality engineering for parameter selection using a novel neural-genetic algorithmen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/S0166-3615(02)00140-9en_US
dc.identifier.journalCOMPUTERS IN INDUSTRYen_US
dc.citation.volume50en_US
dc.citation.issue1en_US
dc.citation.spage113en_US
dc.citation.epage122en_US
dc.contributor.department工業工程與管理學系zh_TW
dc.contributor.departmentDepartment of Industrial Engineering and Managementen_US
dc.identifier.wosnumberWOS:000180877400008-
dc.citation.woscount25-
顯示於類別:期刊論文


文件中的檔案:

  1. 000180877400008.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。