Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Ban, JC | en_US |
dc.contributor.author | Hsu, CH | en_US |
dc.contributor.author | Lin, SS | en_US |
dc.date.accessioned | 2014-12-08T15:41:37Z | - |
dc.date.available | 2014-12-08T15:41:37Z | - |
dc.date.issued | 2003-01-01 | en_US |
dc.identifier.issn | 0218-1274 | en_US |
dc.identifier.uri | http://dx.doi.org/10.1142/S0218127403006376 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/28296 | - |
dc.description.abstract | This study demonstrates the devil's staircase structure of topological entropy functions for one-dimensional symmetric unimodal maps with a gap inside. The results are obtained by using kneading theory and are helpful in investigating the communication of chaos. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | devil's staircase | en_US |
dc.subject | gap map | en_US |
dc.subject | kneading theory | en_US |
dc.title | Devil's staircase of gap maps | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1142/S0218127403006376 | en_US |
dc.identifier.journal | INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | en_US |
dc.citation.volume | 13 | en_US |
dc.citation.issue | 1 | en_US |
dc.citation.spage | 115 | en_US |
dc.citation.epage | 122 | en_US |
dc.contributor.department | 應用數學系 | zh_TW |
dc.contributor.department | Department of Applied Mathematics | en_US |
dc.identifier.wosnumber | WOS:000181650000006 | - |
dc.citation.woscount | 1 | - |
Appears in Collections: | Articles |
Files in This Item:
If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.