Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Wang, WJ | en_US |
dc.contributor.author | Wells, MT | en_US |
dc.date.accessioned | 2014-12-08T15:41:49Z | - |
dc.date.available | 2014-12-08T15:41:49Z | - |
dc.date.issued | 2002-11-01 | en_US |
dc.identifier.issn | 0378-3758 | en_US |
dc.identifier.uri | http://dx.doi.org/10.1016/S0378-3758(02)00276-8 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/28440 | - |
dc.description.abstract | In this article, we consider testing a general linear hypothesis for a regression model when the error distribution belongs to the class of spherical distributions. The distributional robustness of the F-statistics under a null hypothesis for spherically symmetric distributions is well understood. This invariance property, however, does not hold under the alternative hypothesis. Motivated by a simplified example, we study the relationship between power of the test and the error distribution's dispersion and kurtosis. We find that these two parameters are not sufficiently precise measures for determining the power behavior of a test. (C) 2002 Elsevier Science B.V. All rights reserved. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | dispersion | en_US |
dc.subject | elliptically and spherically symmetric distributions | en_US |
dc.subject | kurtosis | en_US |
dc.subject | linear models | en_US |
dc.subject | power | en_US |
dc.subject | tail behavior | en_US |
dc.title | Power analysis for linear models with spherical errors | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1016/S0378-3758(02)00276-8 | en_US |
dc.identifier.journal | JOURNAL OF STATISTICAL PLANNING AND INFERENCE | en_US |
dc.citation.volume | 108 | en_US |
dc.citation.issue | 1-2 | en_US |
dc.citation.spage | 155 | en_US |
dc.citation.epage | 171 | en_US |
dc.contributor.department | 統計學研究所 | zh_TW |
dc.contributor.department | Institute of Statistics | en_US |
dc.identifier.wosnumber | WOS:000179154800011 | - |
dc.citation.woscount | 1 | - |
Appears in Collections: | Articles |
Files in This Item:
If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.