Full metadata record
DC FieldValueLanguage
dc.contributor.authorChuang, YCen_US
dc.contributor.authorHsu, LHen_US
dc.contributor.authorChang, CHen_US
dc.date.accessioned2014-12-08T15:41:49Z-
dc.date.available2014-12-08T15:41:49Z-
dc.date.issued2002-10-31en_US
dc.identifier.issn0020-0190en_US
dc.identifier.urihttp://dx.doi.org/10.1016/S0020-0190(02)00225-9en_US
dc.identifier.urihttp://hdl.handle.net/11536/28441-
dc.description.abstractA graph G* is 1-edge fault-tolerant with respect to a graph G, denoted by 1-EFT(G), if every graph obtained by removing any edge from G* contains G. A1-EFT(G) graph is optimal if it contains the minimum number of edges among all 1-EFT(G) graphs. The kth ladder graph, L-k, is defined to be the cartesian product of the P-k and P-2 where P-n is the n-vertex path graph. In this paper, we present several 1-edge fault-tolerant graphs with respect to ladders. Some of these graphs are proven to be optimal. (C) 2002 Elsevier Science B.V. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectCartesian producten_US
dc.subjectedge fault toleranceen_US
dc.subjectmeshesen_US
dc.subjectladdersen_US
dc.subjectfault toleranceen_US
dc.titleOptimal 1-edge fault-tolerant designs for laddersen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/S0020-0190(02)00225-9en_US
dc.identifier.journalINFORMATION PROCESSING LETTERSen_US
dc.citation.volume84en_US
dc.citation.issue2en_US
dc.citation.spage87en_US
dc.citation.epage92en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000178093900005-
dc.citation.woscount4-
Appears in Collections:Articles


Files in This Item:

  1. 000178093900005.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.