Title: A physical model for the hysteresis phenomenon of the ultrathin ZrO2 film
Authors: Wang, JC
Chiao, SH
Lee, CL
Lei, TF
Lin, YM
Wang, MF
Chen, SC
Yu, CH
Liang, MS
電子工程學系及電子研究所
Department of Electronics Engineering and Institute of Electronics
Issue Date: 1-Oct-2002
Abstract: This work studies and presents an inner-interface trapping physical model for the ultra-thin (effective oxide thickness=15 Angstrom) zirconium oxide (ZrO2) film to explain its hysteresis phenomenon. The shift of the capacitance-voltage characteristics swept from accumulation to inversion and then swept back with light illumination is about 110 mV, which is larger than the shift without light illumination (similar to45 mV). The mobile ion effect is obviated using bias-temperature stress measurement. The proposed model successfully explains not only the phenomenon but also the thickness effect for the capacitance-voltage characteristics and the different turn-around voltages of the current density-voltage characteristics of the zirconium dielectrics. (C) 2002 American Institute of Physics.
URI: http://dx.doi.org/10.1063/1.1498964
http://hdl.handle.net/11536/28464
ISSN: 0021-8979
DOI: 10.1063/1.1498964
Journal: JOURNAL OF APPLIED PHYSICS
Volume: 92
Issue: 7
Begin Page: 3936
End Page: 3940
Appears in Collections:Articles


Files in This Item:

  1. 000178087600078.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.