Full metadata record
DC FieldValueLanguage
dc.contributor.authorTsai, CHen_US
dc.contributor.authorTan, JJMen_US
dc.contributor.authorLiang, TNen_US
dc.contributor.authorHsu, LHen_US
dc.date.accessioned2014-12-08T15:41:56Z-
dc.date.available2014-12-08T15:41:56Z-
dc.date.issued2002-09-30en_US
dc.identifier.issn0020-0190en_US
dc.identifier.urihttp://dx.doi.org/10.1016/S0020-0190(02)00214-4en_US
dc.identifier.urihttp://hdl.handle.net/11536/28514-
dc.description.abstractIt is known that every hypercube Q(n) is a bipartite graph. Assume that n greater than or equal to 2 and F is a subset of edges with F less than or equal to n - 2. We prove that there exists a hamiltonian path in Q(n) - F between any two vertices of different partite sets. Moreover, there exists a path of length 2(n) - 2 between any two vertices of the same partite set. Assume that n greater than or equal to 3 and F is a subset of edges with F less than or equal to n - 3. We prove that there exists a hamiltonian path in Q(n) - {v} - F between any two vertices in the partite set without v. Furthermore, all bounds are tight. (C) 2002 Elsevier Science B.V. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjecthamiltonian laceableen_US
dc.subjecthypercubeen_US
dc.subjectfault toleranceen_US
dc.titleFault-tolerant hamiltonian laceability of hypercubesen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/S0020-0190(02)00214-4en_US
dc.identifier.journalINFORMATION PROCESSING LETTERSen_US
dc.citation.volume83en_US
dc.citation.issue6en_US
dc.citation.spage301en_US
dc.citation.epage306en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000177212700002-
dc.citation.woscount53-
Appears in Collections:Articles


Files in This Item:

  1. 000177212700002.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.