完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | Tsai, CH | en_US |
dc.contributor.author | Tan, JJM | en_US |
dc.contributor.author | Liang, TN | en_US |
dc.contributor.author | Hsu, LH | en_US |
dc.date.accessioned | 2014-12-08T15:41:56Z | - |
dc.date.available | 2014-12-08T15:41:56Z | - |
dc.date.issued | 2002-09-30 | en_US |
dc.identifier.issn | 0020-0190 | en_US |
dc.identifier.uri | http://dx.doi.org/10.1016/S0020-0190(02)00214-4 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/28514 | - |
dc.description.abstract | It is known that every hypercube Q(n) is a bipartite graph. Assume that n greater than or equal to 2 and F is a subset of edges with F less than or equal to n - 2. We prove that there exists a hamiltonian path in Q(n) - F between any two vertices of different partite sets. Moreover, there exists a path of length 2(n) - 2 between any two vertices of the same partite set. Assume that n greater than or equal to 3 and F is a subset of edges with F less than or equal to n - 3. We prove that there exists a hamiltonian path in Q(n) - {v} - F between any two vertices in the partite set without v. Furthermore, all bounds are tight. (C) 2002 Elsevier Science B.V. All rights reserved. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | hamiltonian laceable | en_US |
dc.subject | hypercube | en_US |
dc.subject | fault tolerance | en_US |
dc.title | Fault-tolerant hamiltonian laceability of hypercubes | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1016/S0020-0190(02)00214-4 | en_US |
dc.identifier.journal | INFORMATION PROCESSING LETTERS | en_US |
dc.citation.volume | 83 | en_US |
dc.citation.issue | 6 | en_US |
dc.citation.spage | 301 | en_US |
dc.citation.epage | 306 | en_US |
dc.contributor.department | 資訊工程學系 | zh_TW |
dc.contributor.department | Department of Computer Science | en_US |
dc.identifier.wosnumber | WOS:000177212700002 | - |
dc.citation.woscount | 53 | - |
顯示於類別: | 期刊論文 |