完整後設資料紀錄
DC 欄位語言
dc.contributor.authorChen, RSen_US
dc.contributor.authorLu, KYen_US
dc.contributor.authorYu, SCen_US
dc.date.accessioned2014-12-08T15:42:01Z-
dc.date.available2014-12-08T15:42:01Z-
dc.date.issued2002-09-01en_US
dc.identifier.issn0952-1976en_US
dc.identifier.urihttp://dx.doi.org/10.1016/S0952-1976(02)00073-8en_US
dc.identifier.urihttp://hdl.handle.net/11536/28557-
dc.description.abstractIn practice, modeling an assembly system often requires assigning a set of operations to a set of workstations. The aim is to optimize some performance indices of an assembly line. This assignation is usually a tedious design procedure so a significant amount of manpower is required to obtain a good work plan. Poor assembly planning may significantly increase the cost of products and reduce productivity. However, these optimization problems fall into the class of NP-hard problems. Finding an optimal solution in an acceptable time is difficult, even using a powerful computer. This study presents a hybrid genetic algorithm approach to the problems of assembly planning with various objectives, including minimizing cycle time, maximizing workload smoothness, minimizing the frequency of tool change, minimizing the number of tools and machines used, and minimizing the complexity of assembly sequences. A self-tuning method was developed to correct infeasible-chromosomes. Several examples were employed to illustrate the proposed approach. Experimental results indicated that the proposed method can efficiently yield many alternative assembly plans to support the design and operation of a flexible assembly system. (C) 2003 Elsevier Science Ltd. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectassembly planningen_US
dc.subjectgenetic algorithmen_US
dc.subjectassembly line balancingen_US
dc.subjectmulti-objectiveen_US
dc.subjectdesign for assemblyen_US
dc.titleA hybrid genetic algorithm approach on multi-objective of assembly planning problemen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/S0952-1976(02)00073-8en_US
dc.identifier.journalENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCEen_US
dc.citation.volume15en_US
dc.citation.issue5en_US
dc.citation.spage447en_US
dc.citation.epage457en_US
dc.contributor.department資訊管理與財務金融系 註:原資管所+財金所zh_TW
dc.contributor.departmentDepartment of Information Management and Financeen_US
dc.identifier.wosnumberWOS:000181709400007-
dc.citation.woscount48-
顯示於類別:期刊論文


文件中的檔案:

  1. 000181709400007.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。