Full metadata record
DC FieldValueLanguage
dc.contributor.authorChen, SSen_US
dc.contributor.authorShih, CWen_US
dc.date.accessioned2014-12-08T15:42:01Z-
dc.date.available2014-12-08T15:42:01Z-
dc.date.issued2002-09-01en_US
dc.identifier.issn1054-1500en_US
dc.identifier.urihttp://dx.doi.org/10.1063/1.1488895en_US
dc.identifier.urihttp://hdl.handle.net/11536/28562-
dc.description.abstractWe study the existence of snap-back repellers, hence the existence of transversal homoclinic orbits in a discrete-time neural network. Chaotic behaviors for the network system in the sense of Li and Yorke or Marotto can then be concluded. The result is established by analyzing the structures of the system and allocating suitable parameters in constructing the fixed points and their pre-images for the system. The investigation provides a theoretical confirmation on the scenario of transient chaos for the system. All the parameter conditions for the theory can be examined numerically. The numerical ranges for the parameters which yield chaotic dynamics and convergent dynamics provide significant information in the annealing process in solving combinatorial optimization problems using this transiently chaotic neural network. (C) 2002 American Institute of Physics.en_US
dc.language.isoen_USen_US
dc.titleTransversal homoclinic orbits in a transiently chaotic neural networken_US
dc.typeArticleen_US
dc.identifier.doi10.1063/1.1488895en_US
dc.identifier.journalCHAOSen_US
dc.citation.volume12en_US
dc.citation.issue3en_US
dc.citation.spage654en_US
dc.citation.epage671en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000177682000012-
dc.citation.woscount15-
Appears in Collections:Articles


Files in This Item:

  1. 000177682000012.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.