Full metadata record
DC FieldValueLanguage
dc.contributor.authorKuo, THen_US
dc.contributor.authorTsai, CCen_US
dc.date.accessioned2014-12-08T15:42:02Z-
dc.date.available2014-12-08T15:42:02Z-
dc.date.issued2002-09-01en_US
dc.identifier.issn1027-5487en_US
dc.identifier.urihttp://hdl.handle.net/11536/28566-
dc.description.abstractWe study the following semilinear elliptic problem: [GRAPHICS] where B is a ball in R-N, N greater than or equal to 3, a(ij) = a(ij) (x, r) epsilon C-0,C-1 ((B) over bar x R), a(ij), partial derivativea(ij)/partial derivativex(i), partial derivativea(ij)/partial derivativer, b(i), c epsilon L-infinity (B x R), with i, j = 1, 2,(...),N and c less than or equal to 0, and f epsilon L-p(B). For each p, p greater than or equal to N, there exists a strong solution u epsilon W-2,W-p(B) boolean AND W-0(1,p)(B) provided the oscillations of a(ij) with respect to r are sufficiently small. Moreover, for N/2 < p < N, if f(Lp) is small enough, then the existence result remains hold.en_US
dc.language.isoen_USen_US
dc.subjectsemilinear elliptic problemen_US
dc.subjectstrong solutionen_US
dc.subjectW-2,W-p estimateen_US
dc.titleOn the existence of strong solutions to some semilinear elliptic problemsen_US
dc.typeArticleen_US
dc.identifier.journalTAIWANESE JOURNAL OF MATHEMATICSen_US
dc.citation.volume6en_US
dc.citation.issue3en_US
dc.citation.spage343en_US
dc.citation.epage354en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000178773200003-
dc.citation.woscount0-
Appears in Collections:Articles