Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Kuo, TH | en_US |
dc.contributor.author | Tsai, CC | en_US |
dc.date.accessioned | 2014-12-08T15:42:02Z | - |
dc.date.available | 2014-12-08T15:42:02Z | - |
dc.date.issued | 2002-09-01 | en_US |
dc.identifier.issn | 1027-5487 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/28566 | - |
dc.description.abstract | We study the following semilinear elliptic problem: [GRAPHICS] where B is a ball in R-N, N greater than or equal to 3, a(ij) = a(ij) (x, r) epsilon C-0,C-1 ((B) over bar x R), a(ij), partial derivativea(ij)/partial derivativex(i), partial derivativea(ij)/partial derivativer, b(i), c epsilon L-infinity (B x R), with i, j = 1, 2,(...),N and c less than or equal to 0, and f epsilon L-p(B). For each p, p greater than or equal to N, there exists a strong solution u epsilon W-2,W-p(B) boolean AND W-0(1,p)(B) provided the oscillations of a(ij) with respect to r are sufficiently small. Moreover, for N/2 < p < N, if f(Lp) is small enough, then the existence result remains hold. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | semilinear elliptic problem | en_US |
dc.subject | strong solution | en_US |
dc.subject | W-2,W-p estimate | en_US |
dc.title | On the existence of strong solutions to some semilinear elliptic problems | en_US |
dc.type | Article | en_US |
dc.identifier.journal | TAIWANESE JOURNAL OF MATHEMATICS | en_US |
dc.citation.volume | 6 | en_US |
dc.citation.issue | 3 | en_US |
dc.citation.spage | 343 | en_US |
dc.citation.epage | 354 | en_US |
dc.contributor.department | 應用數學系 | zh_TW |
dc.contributor.department | Department of Applied Mathematics | en_US |
dc.identifier.wosnumber | WOS:000178773200003 | - |
dc.citation.woscount | 0 | - |
Appears in Collections: | Articles |