Title: 在環上混合型邊界條件的半線性方程
Semilinear elliptic equations on annular domain with mixed bound- ary conditions
Authors: 黃國楨
Whang, Guo-Jen
林松山
Lin, Song-Sun
應用數學系所
Keywords: 環;混合型;半線性;方程;Semilinear;elliptic;equations;annular;mixed
Issue Date: 1992
Abstract: 此篇學位論文中,我們考慮這個方程式的正半徑對稱解的存在性 .DELTA.
u+g(.lgvert.x.lgvert.)f(u)=0在R<.lgvert.x.lgvert.<.Rbar. x.in.歐
幾里得N-空間 N.gtoreq.2有下列的邊界條件集合之一個:u=0在.lgvert.
x.lgvert.=R,和u=0在.lgvert.x.lgvert.=.Rbar.,u=0在 .lgvert.x.
lgvert.=R,和u對半徑之微分等於零,在.lgvert.x.lgvert.= .Rbar.,u
對半徑之微分等於零,在.lgvert.x.lgvert.=R,和u=0在 .lgvert.x.
lgvert.=.Rbar.。此篇論文,是由參考文獻[1],[2],和[3]所引發的。
我們使用射擊法及估計,證明了解的存在性,得到以下的結果:在給定區
間[a,b],0<a<b<.inf.後,假設(A-1)',(A-2)',(A-3)'都成立,那麼我
們所要探討的方程式,都至少有一個正半徑對稱解。從內容中也可輕易看
出此篇也再次確証了一些已知的好結果。
In this thesis we consider the existence of the positive radial
solutions of the equation.DELTA.u+g(.lgvert.x.lgvert.)f(u)=0 in
R <.lgvert.x.lgvert.<.Rbar.x.in. Euclidean N-space,N.gtoreq.2,
with one of following sets of boundary conditions: u=0 on
.lgvert.x .lgvert.=R and u=0 on .lgvert.x.lgvert.=.Rbar., u=0
on .lgvert.x .lgvert.=R and the differentiation in the radial
direction=0 on .lgvert.x.lgvert.=.Rbar., the differentiation in
the radial dire- ction = 0 on .lgvert.x.lgvert.=R and u=0 on
.lgvert.x.lgvert.= .Rbar.. This thesis was motivated by
reference [1],[2],and[3]. We used shooting methods and
estimation to prove the existence of t- he positive radial
solutions, and got the following results: giv- en [a,b],0<a<b<.
inf., assume(A-1)'(A-2)',and(A-3)'hold,then thses equations we
consider have positeve radial solutions. It is easy to see that
this thesis verifies some good results.
URI: http://140.113.39.130/cdrfb3/record/nctu/#NT810507002
http://hdl.handle.net/11536/57102
Appears in Collections:Thesis