標題: | Numerical simulation of quantum effects in high-k gate dielectric MOS structures using quantum mechanical models |
作者: | Li, YM Lee, JW Tang, TW Chao, TS Lei, TF Sze, SM 電子物理學系 友訊交大聯合研發中心 Department of Electrophysics D Link NCTU Joint Res Ctr |
關鍵字: | MOS capacitor;high-k dielectric;quantum mechanical models;numerical methods |
公開日期: | 1-Aug-2002 |
摘要: | In this paper the electrical characteristics of metal oxide semiconductor (MOS) capacitors with high-k gate dielectric are investigated with quantum mechanical models. Both the self-consistent Schrodinger-Poisson (SP) model and the density gradient (DG) model are solved simultaneously to study quantum confinement effects (QCEs) for MOS capacitors. A computationally efficient parallel eigenvalue solution algorithm and a robust monotone iterative (MI) finite volume (FV) scheme for the SP and DG models are systematically proposed and successfully implemented on a Linux cluster, respectively. With the developed simulator, we can extract the effective gate oxide thickness from capacitance voltage (C-V) measurements for TaN and Al gate NMOS capacitors with ZrO2 and SiO2 gate dielectric materials. We found that quantization effects of 5.0 nut Z(r)O(2) MOS samples cannot be directly equivalent to commonly quoted effects of 1.5 nm SiO2 MOS samples. Achieved benchmarks are also included to demonstrate excellent performances of the proposed computational techniques. (C) 2002 Elsevier Science B.V. All rights reserved. |
URI: | http://dx.doi.org/10.1016/S0010-4655(02)00248-5 http://hdl.handle.net/11536/28625 |
ISSN: | 0010-4655 |
DOI: | 10.1016/S0010-4655(02)00248-5 |
期刊: | COMPUTER PHYSICS COMMUNICATIONS |
Volume: | 147 |
Issue: | 1-2 |
起始頁: | 214 |
結束頁: | 217 |
Appears in Collections: | Conferences Paper |
Files in This Item:
If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.