完整後設資料紀錄
DC 欄位語言
dc.contributor.authorHuang, HLen_US
dc.contributor.authorJou, JYen_US
dc.date.accessioned2014-12-08T15:42:08Z-
dc.date.available2014-12-08T15:42:08Z-
dc.date.issued2002-08-01en_US
dc.identifier.issn0218-1266en_US
dc.identifier.urihttp://dx.doi.org/10.1142/S0218126602000495en_US
dc.identifier.urihttp://hdl.handle.net/11536/28629-
dc.description.abstractMonte Carlo approach for power estimation is based on the assumption that the samples of power are Normally distributed. However, the power distribution of a circuit is not always Normal in the real world. In this paper, the Bootstrap method is adopted to adjust the confidence interval and redeem the deficiency of the conventional Monte Carlo method. Besides, a new input sequence stratification technique for power estimation is proposed. The proposed technique utilizes a multiple regression method to compute the coefficient matrix of the indicator function for stratification. This new stratification technique can adaptively update the coefficient matrix and keep the population of input vectors in a better stratification status. The experimental results demonstrate that the proposed Bootstrap Monte Carlo method with adaptive stratification can effectively reduce the simulation time and meet the user-specified confidence level and error level.en_US
dc.language.isoen_USen_US
dc.subjectpower characterizationen_US
dc.subjectadaptive stratificationen_US
dc.subjectMonte Carloen_US
dc.subjectbootstrapen_US
dc.titleBootstrap Monte Carlo with adaptive stratification for power estimationen_US
dc.typeArticleen_US
dc.identifier.doi10.1142/S0218126602000495en_US
dc.identifier.journalJOURNAL OF CIRCUITS SYSTEMS AND COMPUTERSen_US
dc.citation.volume11en_US
dc.citation.issue4en_US
dc.citation.spage333en_US
dc.citation.epage350en_US
dc.contributor.department電子工程學系及電子研究所zh_TW
dc.contributor.departmentDepartment of Electronics Engineering and Institute of Electronicsen_US
dc.identifier.wosnumberWOS:000179292600003-
dc.citation.woscount1-
顯示於類別:期刊論文


文件中的檔案:

  1. 000179292600003.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。