Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Lin, YP | en_US |
dc.contributor.author | Phoong, SM | en_US |
dc.date.accessioned | 2014-12-08T15:42:09Z | - |
dc.date.available | 2014-12-08T15:42:09Z | - |
dc.date.issued | 2002-08-01 | en_US |
dc.identifier.issn | 1070-9908 | en_US |
dc.identifier.uri | http://dx.doi.org/10.1109/LSP.2002.803015 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/28637 | - |
dc.description.abstract | The pseudocirculant matrices have been found to be a very useful tool in the analysis and design of communication systems, e.g., precoding systems and discrete multitone transceivers. In these systems, a scalar channel P(z) is recast into a pseudocirculant channel matrix. Many important channel properties have been derived from the Smith form and the decomposition of pseudocirculants. In this letter, we will show that the Smith form of a pseudocirculant matrix can be given in terms of the zeros of the underlying finite-impulse response (FIR) channel P(z). Once the zeros of P(z) are known, the Smith form of the corresponding pseudocirculant matrix can be obtained in closed form. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | block filtering | en_US |
dc.subject | congruous zeros | en_US |
dc.subject | pseudocirculant | en_US |
dc.subject | Smith form | en_US |
dc.subject | Smith form decomposition | en_US |
dc.title | Smith form of FIR pseudocirculants | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1109/LSP.2002.803015 | en_US |
dc.identifier.journal | IEEE SIGNAL PROCESSING LETTERS | en_US |
dc.citation.volume | 9 | en_US |
dc.citation.issue | 8 | en_US |
dc.citation.spage | 256 | en_US |
dc.citation.epage | 258 | en_US |
dc.contributor.department | 電控工程研究所 | zh_TW |
dc.contributor.department | Institute of Electrical and Control Engineering | en_US |
dc.identifier.wosnumber | WOS:000178228000009 | - |
dc.citation.woscount | 4 | - |
Appears in Collections: | Articles |
Files in This Item:
If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.