Title: | Abundance of mosaic patterns for CNN with spatially variant templates |
Authors: | Hsu, CH Yang, TH 應用數學系 Department of Applied Mathematics |
Keywords: | transition matrix;spatial entropy |
Issue Date: | 1-Jun-2002 |
Abstract: | This work investigates the complexity of one-dimensional cellular neural network mosaic patterns with spatially variant templates on finite and infinite lattices. Various boundary conditions are considered for finite lattices and the exact number of mosaic patterns is computed precisely. The entropy of mosaic patterns with periodic templates can also be calculated for infinite lattices. Furthermore, we show the abundance of mosaic patterns with respect to template periods and, which differ greatly from cases with spatially invariant templates. |
URI: | http://dx.doi.org/10.1142/S0218127402005108 http://hdl.handle.net/11536/28781 |
ISSN: | 0218-1274 |
DOI: | 10.1142/S0218127402005108 |
Journal: | INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS |
Volume: | 12 |
Issue: | 6 |
Begin Page: | 1321 |
End Page: | 1332 |
Appears in Collections: | Articles |
Files in This Item:
If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.