Full metadata record
DC FieldValueLanguage
dc.contributor.authorHsu, CHen_US
dc.contributor.authorYang, THen_US
dc.date.accessioned2014-12-08T15:42:23Z-
dc.date.available2014-12-08T15:42:23Z-
dc.date.issued2002-06-01en_US
dc.identifier.issn0218-1274en_US
dc.identifier.urihttp://dx.doi.org/10.1142/S0218127402005108en_US
dc.identifier.urihttp://hdl.handle.net/11536/28781-
dc.description.abstractThis work investigates the complexity of one-dimensional cellular neural network mosaic patterns with spatially variant templates on finite and infinite lattices. Various boundary conditions are considered for finite lattices and the exact number of mosaic patterns is computed precisely. The entropy of mosaic patterns with periodic templates can also be calculated for infinite lattices. Furthermore, we show the abundance of mosaic patterns with respect to template periods and, which differ greatly from cases with spatially invariant templates.en_US
dc.language.isoen_USen_US
dc.subjecttransition matrixen_US
dc.subjectspatial entropyen_US
dc.titleAbundance of mosaic patterns for CNN with spatially variant templatesen_US
dc.typeArticleen_US
dc.identifier.doi10.1142/S0218127402005108en_US
dc.identifier.journalINTERNATIONAL JOURNAL OF BIFURCATION AND CHAOSen_US
dc.citation.volume12en_US
dc.citation.issue6en_US
dc.citation.spage1321en_US
dc.citation.epage1332en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000177176200005-
dc.citation.woscount5-
Appears in Collections:Articles


Files in This Item:

  1. 000177176200005.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.