完整後設資料紀錄
DC 欄位語言
dc.contributor.authorHuang, Kou-Yuanen_US
dc.contributor.authorChen, Kai-Juen_US
dc.contributor.authorYou, Jiun-Deren_US
dc.contributor.authorTung, An-Chingen_US
dc.date.accessioned2014-12-08T15:42:28Z-
dc.date.available2014-12-08T15:42:28Z-
dc.date.issued2008-10-01en_US
dc.identifier.issn0925-2312en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.neucom.2008.04.034en_US
dc.identifier.urihttp://hdl.handle.net/11536/28843-
dc.description.abstractHough transform neural network is adopted to detect the line pattern of direct wave and the hyperbolic pattern of reflection wave in a one-shot seismogram. We use time difference from point to hyperbola and line as the distance in the pattern detection of seismic direct and reflection waves. This distance calculation makes the parameter learning feasible. One set of parameters represents one pattern. Many sets of parameters represent many patterns. The neural network can calculate the distances from point to many patterns as total error. The parameter learning rule is derived by gradient descent method to minimize the total error. The network is applied to three kinds of data in the experiments. One is the line and hyperbolic pattern in the image data. The second is the simulated one-shot seismic data. And the last is the real one-shot seismic data. Experimental results show that lines and hyperbolas can be detected correctly in three kinds of data. The method can also tolerate certain level of noise data. The detection results in the one-shot seismogram can improve the seismic interpretation and further seismic data processing. (C) 2008 Elsevier B.V. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectHough transform neural networken_US
dc.subjectSeismic pattern detectionen_US
dc.subjectReflection waveen_US
dc.subjectHyperbolic pattern detectionen_US
dc.titleHough transform neural network for pattern detection and seismic applicationsen_US
dc.typeArticle; Proceedings Paperen_US
dc.identifier.doi10.1016/j.neucom.2008.04.034en_US
dc.identifier.journalNEUROCOMPUTINGen_US
dc.citation.volume71en_US
dc.citation.issue16-18en_US
dc.citation.spage3264en_US
dc.citation.epage3274en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000260066100026-
顯示於類別:會議論文


文件中的檔案:

  1. 000260066100026.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。