完整後設資料紀錄
DC 欄位語言
dc.contributor.authorHuang, WTen_US
dc.contributor.authorTan, JJMen_US
dc.contributor.authorHung, CNen_US
dc.contributor.authorHsu, LHen_US
dc.date.accessioned2014-12-08T15:42:32Z-
dc.date.available2014-12-08T15:42:32Z-
dc.date.issued2002-04-01en_US
dc.identifier.issn0743-7315en_US
dc.identifier.urihttp://dx.doi.org/10.1006/jpdc.2001.1813en_US
dc.identifier.urihttp://hdl.handle.net/11536/28880-
dc.description.abstractThe twisted cube TQ(n), is derived by changing some connection of hypercube Q(n) according to specific rules. Recently, many topological properties of this variation cube are studied. In this paper, we consider a faulty twisted n-cube with both edge and/or node faults. Let F be a subset of V(TQ(n)) boolean AND E(TQ(n)), we prove that TQ(n) - F remains hamiltonian if F less than or equal to n - 2. Moreover, we prove that there exists a hamiltonian path in TQ, - F joining any two vertices u, v in V(TQ(n)) - F if F less than or equal to n-3. The result is optimum in the sense that the fault-tolerant hamiltonicity (fault-tolerant hamiltonian connectivity respectively) of TQn is at most n-2 (n-3 respectively). (C) 2002 Elsevier Science (USA).en_US
dc.language.isoen_USen_US
dc.subjecthamiltonianen_US
dc.subjecthamiltonian connecteden_US
dc.subjectfault-toleranten_US
dc.subjecttwisted cubeen_US
dc.titleFault-tolerant hamiltonicity of twisted cubesen_US
dc.typeArticleen_US
dc.identifier.doi10.1006/jpdc.2001.1813en_US
dc.identifier.journalJOURNAL OF PARALLEL AND DISTRIBUTED COMPUTINGen_US
dc.citation.volume62en_US
dc.citation.issue4en_US
dc.citation.spage591en_US
dc.citation.epage604en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000175601500005-
dc.citation.woscount64-
顯示於類別:期刊論文


文件中的檔案:

  1. 000175601500005.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。