完整後設資料紀錄
DC 欄位語言
dc.contributor.authorLin, SFen_US
dc.contributor.authorChang, YWen_US
dc.contributor.authorSu, CKen_US
dc.date.accessioned2014-12-08T15:42:42Z-
dc.date.available2014-12-08T15:42:42Z-
dc.date.issued2002-03-01en_US
dc.identifier.issn1016-2364en_US
dc.identifier.urihttp://hdl.handle.net/11536/28971-
dc.description.abstractA novel off-line algorithm and a modified chain code for recognizing signatures are proposed in the present study. Carbon paper is used to detect force distributions when people write their signatures. First of all, the signature contours are located and the upper and lower profiles are generated then, these are used to classify the given si.-nature. Both the gray-scale and the chain code characteristics of a signature are used to extract structure and force distribution features, which are then transformed into a normalized vector. Finally, a Supervised Fuzzy Adaptive Hamming Network (SFAHN) is employed to interpret the feature vector in order to determine whether the signature is genuine or not. Simulation results show that the proposed algorithm has a good recognition rate.en_US
dc.language.isoen_USen_US
dc.subjectsignature recognitionen_US
dc.subjectupper profilesen_US
dc.subjectlower profilesen_US
dc.subjectchain codesen_US
dc.subjectfeature extractionen_US
dc.titleA study on Chinese carbon-signature recognitionen_US
dc.typeArticleen_US
dc.identifier.journalJOURNAL OF INFORMATION SCIENCE AND ENGINEERINGen_US
dc.citation.volume18en_US
dc.citation.issue2en_US
dc.citation.spage257en_US
dc.citation.epage280en_US
dc.contributor.department電控工程研究所zh_TW
dc.contributor.departmentInstitute of Electrical and Control Engineeringen_US
dc.identifier.wosnumberWOS:000175565100006-
dc.citation.woscount1-
顯示於類別:期刊論文


文件中的檔案:

  1. 000175565100006.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。