Full metadata record
DC FieldValueLanguage
dc.contributor.authorChang, GJen_US
dc.contributor.authorHo, PHen_US
dc.date.accessioned2014-12-08T15:01:06Z-
dc.date.available2014-12-08T15:01:06Z-
dc.date.issued1998-02-01en_US
dc.identifier.issn0377-2217en_US
dc.identifier.urihttp://hdl.handle.net/11536/28-
dc.description.abstractSuppose G = (S, T, E) is a bipartite graph, where (S,T) is a bipartition of the vertex set. A beta-assignment is an edge set X subset of or equal to E such that deg(X)(i) = 1 for all i is an element of S. The cardinality beta-assignment problem is to find a beta-assignment X which minimizes beta(X) = max(j is an element of)T deg(X)(j). Suppose we associate every edge with a weight which is a real number. The bottleneck beta-assignment problem is to find a beta-assignment X that minimizes beta(X) and maximizes the minimum edge weight on X. The weighted beta-assignment problem is to find a beta-assignment X that minimizes beta(X) and maximizes the total weights of edges in X. This paper presents O(/SJ//E/)-time algorithms for the cardinality and the bottleneck beta-assignment problems and an O(/S/(2)/T/ + /S//T/(2))-time algorithm for the weighted beta-assignment problem. (C) 1998 Elsevier Science B.V.en_US
dc.language.isoen_USen_US
dc.subjectassignmenten_US
dc.subjectbottlenecken_US
dc.subjectaugmenting pathen_US
dc.subjectlabelen_US
dc.titleThe beta-assignment problemsen_US
dc.typeArticleen_US
dc.identifier.journalEUROPEAN JOURNAL OF OPERATIONAL RESEARCHen_US
dc.citation.volume104en_US
dc.citation.issue3en_US
dc.citation.spage593en_US
dc.citation.epage600en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000071147100016-
dc.citation.woscount2-
Appears in Collections:Articles


Files in This Item:

  1. 000071147100016.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.