標題: | Buffer allocation in flow-shop-type production systems with general arrival and service patterns |
作者: | Huang, MG Chang, PL Chou, YC 經營管理研究所 Institute of Business and Management |
關鍵字: | buffer allocation;open tandem general queueing networks;blocking;dynamic programming |
公開日期: | 1-Feb-2002 |
摘要: | This study investigates the buffer allocation strategy of a flow-shop-type production system that possesses a given total amount of buffers and finite buffer capacity for each workstation as well as general interarrival and service times in order to optimize such system performances as minimizing work-in-process, cycle time and blocking probability, maximizing throughput, or their combinations. In theory, the buffer allocation problem is in itself a difficult NP-hard combinatorial optimization problem, it is made even more difficult by the fact that the objective function is not obtainable in closed form for interrelating the integer decision variables (i.e., buffer sizes) and the performance measures of the system. Therefore, the purpose of this paper is to present an effective design methodology for buffer allocation in the production system. Our design methodology uses a dynamic programming process along with the embedded approximate analytic procedure for computing system performance measures under a certain allocation strategy. Numerical experiments show that our design methodology can quickly and quite precisely seek out the optimal or sub-optimal allocation strategy for most production system patterns. Scope and purpose Buffer allocation is an important, yet intriguingly difficult issue in physical layout and location planning for production systems with finite floor space. Adequate allocation and placement of available buffers among workstations could help to reduce work-in-process, alleviate production system's congestion and even blocking, and smooth products manufacturing flow. In view of the problem complexity, we focus on flow-shop-type production systems with general arrival and service patterns as well as finite buffer capacity. The flow-shop-type lines, which usually involve with product-based layout, play an important role in mass production type of manufacturing process organization such as transfer line, batch flow line, etc. The purpose of this paper is to present a design methodology with heuristic search and imbedded analytic algorithm of system performances for obtaining the optimal or sub-optimal buffer allocation strategy. Successful use of this design methodology would improve the production efficiency and effectiveness of flow-shop-type production systems. (C) 2001 Elsevier Science Ltd. All rights reserved. |
URI: | http://dx.doi.org/10.1016/S0305-0548(00)00060-5 http://hdl.handle.net/11536/29035 |
ISSN: | 0305-0548 |
DOI: | 10.1016/S0305-0548(00)00060-5 |
期刊: | COMPUTERS & OPERATIONS RESEARCH |
Volume: | 29 |
Issue: | 2 |
起始頁: | 103 |
結束頁: | 121 |
Appears in Collections: | Articles |
Files in This Item:
If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.