Full metadata record
DC FieldValueLanguage
dc.contributor.authorLIU, CCen_US
dc.contributor.authorCHEN, FCen_US
dc.date.accessioned2014-12-08T15:04:24Z-
dc.date.available2014-12-08T15:04:24Z-
dc.date.issued1993-08-01en_US
dc.identifier.issn0020-7179en_US
dc.identifier.urihttp://dx.doi.org/10.1080/00207179308923005en_US
dc.identifier.urihttp://hdl.handle.net/11536/2910-
dc.description.abstractMultilayer neural networks are used in a non-linear adaptive control problem. The plant is an unknown feedback linearizable continuous-time system with relative degree greater-than-or-equal-to 1. The single-input/single-output system is studied first and then the methodology is extended to control square multi-input/multi-output systems. The control objective is for the plant to track a reference trajectory, and the control law is defined in terms of the outputs of the neural networks. The parameters of the networks are updated on-line according to an augmented tracking error and the network derivatives. A local convergence theorem is given on the convergence of the tracking error. This control algorithm is applied to control a two-input/two-output relative-degree-two system.en_US
dc.language.isoen_USen_US
dc.titleADAPTIVE-CONTROL OF NONLINEAR CONTINUOUS-TIME SYSTEMS USING NEURAL NETWORKS GENERAL RELATIVE DEGREE AND MIMO CASESen_US
dc.typeArticleen_US
dc.identifier.doi10.1080/00207179308923005en_US
dc.identifier.journalINTERNATIONAL JOURNAL OF CONTROLen_US
dc.citation.volume58en_US
dc.citation.issue2en_US
dc.citation.spage317en_US
dc.citation.epage335en_US
dc.contributor.department交大名義發表zh_TW
dc.contributor.department電控工程研究所zh_TW
dc.contributor.departmentNational Chiao Tung Universityen_US
dc.contributor.departmentInstitute of Electrical and Control Engineeringen_US
dc.identifier.wosnumberWOS:A1993LP99000005-
dc.citation.woscount84-
Appears in Collections:Articles