Full metadata record
DC FieldValueLanguage
dc.contributor.authorYoung, KYen_US
dc.contributor.authorWang, JKen_US
dc.date.accessioned2014-12-08T15:43:12Z-
dc.date.available2014-12-08T15:43:12Z-
dc.date.issued2001-12-01en_US
dc.identifier.issn0165-0114en_US
dc.identifier.urihttp://dx.doi.org/10.1016/S0165-0114(00)00081-6en_US
dc.identifier.urihttp://hdl.handle.net/11536/29238-
dc.description.abstractLearning controllers are usually subordinate to conventional controllers in governing multiple-joint robot motion, in spite of their ability to generalize, because learning space complexity and motion variety require them to consume excessive amount of memory when they are employed as major roles in motion governing. We propose using a fuzzy neural network (FNN) to learn and analyze robot motions so that they can be classified according to similarity. After classification, the learning controller can then be designed to govern robot motions according to their similarities without consuming excessive memory resources. (C) 2001 Elsevier Science B.V. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectrobot learning controlen_US
dc.subjectlearning space complexityen_US
dc.subjectmotion similarity analysisen_US
dc.subjectfuzzy neural networken_US
dc.titleRobot motion similarity analysis using an FNN learning mechanismen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/S0165-0114(00)00081-6en_US
dc.identifier.journalFUZZY SETS AND SYSTEMSen_US
dc.citation.volume124en_US
dc.citation.issue2en_US
dc.citation.spage155en_US
dc.citation.epage170en_US
dc.contributor.department電控工程研究所zh_TW
dc.contributor.departmentInstitute of Electrical and Control Engineeringen_US
dc.identifier.wosnumberWOS:000171271600002-
dc.citation.woscount2-
Appears in Collections:Articles


Files in This Item:

  1. 000171271600002.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.