完整後設資料紀錄
DC 欄位語言
dc.contributor.authorFu, HLen_US
dc.contributor.authorShiue, CLen_US
dc.contributor.authorCheng, Xen_US
dc.contributor.authorDu, DZen_US
dc.contributor.authorKim, JMen_US
dc.date.accessioned2014-12-08T15:43:28Z-
dc.date.available2014-12-08T15:43:28Z-
dc.date.issued2001-09-01en_US
dc.identifier.issn0022-3239en_US
dc.identifier.urihttp://dx.doi.org/10.1023/A:1017584227417en_US
dc.identifier.urihttp://hdl.handle.net/11536/29429-
dc.description.abstractLet a be a permutation of the vertex set V(G) of a connected graph G. Define the total relative displacement of alpha in G by [GRAPHIC] where d(G) (x, y) is the length of the shortest path between x and y in G. Let pi*(G) be the maximum value of delta (alpha)(G) among all permutations of V(G). The permutation which realizes pi*(G) is called a chaotic mapping of G. In this paper, we study the chaotic mappings of complete multipartite graphs. The problem is reduced to a quadratic integer programming problem. We characterize its optimal solution and present an algorithm running in O(n(5) log n) time, where n is the total number of vertices in a complete multipartite graph.en_US
dc.language.isoen_USen_US
dc.subjectchaotic mappingen_US
dc.subjectcomplete multipartite graphen_US
dc.subjectquadratic integer programmingen_US
dc.subjectoptimal solutionen_US
dc.titleQuadratic integer programming with application to the chaotic mappings of complete multipartite graphsen_US
dc.typeArticleen_US
dc.identifier.doi10.1023/A:1017584227417en_US
dc.identifier.journalJOURNAL OF OPTIMIZATION THEORY AND APPLICATIONSen_US
dc.citation.volume110en_US
dc.citation.issue3en_US
dc.citation.spage545en_US
dc.citation.epage556en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000171212900004-
dc.citation.woscount8-
顯示於類別:期刊論文


文件中的檔案:

  1. 000171212900004.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。