完整後設資料紀錄
DC 欄位語言
dc.contributor.authorWu, MDen_US
dc.contributor.authorSun, CTen_US
dc.date.accessioned2014-12-08T15:43:35Z-
dc.date.available2014-12-08T15:43:35Z-
dc.date.issued2001-08-01en_US
dc.identifier.issn1083-4419en_US
dc.identifier.urihttp://dx.doi.org/10.1109/3477.938270en_US
dc.identifier.urihttp://hdl.handle.net/11536/29473-
dc.description.abstractGenetic algorithms (GAs) are a highly effective and efficient means of solving optimization problems. Gene encoding, fitness landscape and genetic operations are vital to successfully developing a GA. Cheong and Lai(1) described a novel method, which employed an enhanced genetic algorithm with multiple populations, to optimize a fuzzy controller, and the experimental results revealed that their method was effective in producing a well-formed fuzzy rule-base. However, their encoding method and fitness function appear unnatural and inefficient. This study proposes an alternative method of concise genetic encoding and fitness design.en_US
dc.language.isoen_USen_US
dc.subjectfuzzy modelingen_US
dc.subjectgenetic algorithmsen_US
dc.subjectpolyploidyen_US
dc.titleComments on "Constraining the optimization of a fuzzy logic controller"en_US
dc.typeArticleen_US
dc.identifier.doi10.1109/3477.938270en_US
dc.identifier.journalIEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICSen_US
dc.citation.volume31en_US
dc.citation.issue4en_US
dc.citation.spage663en_US
dc.citation.epage666en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000170320400017-
dc.citation.woscount0-
顯示於類別:期刊論文


文件中的檔案:

  1. 000170320400017.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。