Full metadata record
DC FieldValueLanguage
dc.contributor.authorJuang, Jen_US
dc.date.accessioned2014-12-08T15:43:48Z-
dc.date.available2014-12-08T15:43:48Z-
dc.date.issued2001-06-01en_US
dc.identifier.issn0022-247Xen_US
dc.identifier.urihttp://dx.doi.org/10.1006/jmaa.2000.7058en_US
dc.identifier.urihttp://hdl.handle.net/11536/29605-
dc.description.abstractWe consider a matrix Riccati equation containing two parameters C and cu. The quantity c denotes the average total number of particles emerging from a collision, which is assumed to be conservative (i.e., 0 < c less than or equal to 1), and alpha (0 less than or equal to alpha < 1) is an angular shift. Let S = {(c, alpha):0 < c 1 and 0 <less than or equal to> alpha < 1}. Stability analysis for two steady-state solutions X-min and X-max are provided. In particular, we prove that X-min is locally asymptotically stable for S - {(1, 0)}, while X-max is unstable for S - {(1, 0)}. For c = 1 and alpha = 0, X-min = X-max is neutral stable. We also show that such equations have a global positive solution for (c, cu) E S, provided that the initial value is small and positive. (C) 2001 Academic Press.en_US
dc.language.isoen_USen_US
dc.titleGlobal existence and stability of solutions of matrix riccati equationsen_US
dc.typeArticleen_US
dc.identifier.doi10.1006/jmaa.2000.7058en_US
dc.identifier.journalJOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONSen_US
dc.citation.volume258en_US
dc.citation.issue1en_US
dc.citation.spage1en_US
dc.citation.epage12en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000168966200001-
dc.citation.woscount6-
Appears in Collections:Articles


Files in This Item:

  1. 000168966200001.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.