Full metadata record
DC FieldValueLanguage
dc.contributor.authorRosenstein, B.en_US
dc.contributor.authorShapiro, B. Ya.en_US
dc.contributor.authorZhuravlev, V.en_US
dc.date.accessioned2014-12-08T15:43:52Z-
dc.date.available2014-12-08T15:43:52Z-
dc.date.issued2008-04-01en_US
dc.identifier.issn0921-4534en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.physc.2007.11.091en_US
dc.identifier.urihttp://hdl.handle.net/11536/29665-
dc.description.abstractWe investigate the structure, elastic and dynamical properties of the vortex matter in the presence of artificially created or intrinsic gradients of the critical temperature in the framework of the Ginzburg-Landau theory. The region of parameters in which vortex cores are not well separated is treated perturbatively in 1 - H-c2(T)IHc2(0). Critical current for periodic pinning potential is obtained and general expressions for elastic moduli at long wavelength are derived. We show that it is impossible to restrict the system to lowest Landau level. We use it to provide a theory of the discontinuous peak effect in critical current which appears near H-c2(T) line in low T-c strongly type II superconductors. Influence of thermal fluctuations is also considered and we find softening of the shear modulus in the vicinity of vortex lattice melting line. (c) 2008 Elsevier B.V. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectvortex matteren_US
dc.subjectshear modulusen_US
dc.subjectpeak effecten_US
dc.titleVortex lattice in type II superconductors under magnetic field in the presence of inhomogeneitiesen_US
dc.typeArticle; Proceedings Paperen_US
dc.identifier.doi10.1016/j.physc.2007.11.091en_US
dc.identifier.journalPHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONSen_US
dc.citation.volume468en_US
dc.citation.issue7-10en_US
dc.citation.spage621en_US
dc.citation.epage626en_US
dc.contributor.department電子物理學系zh_TW
dc.contributor.departmentDepartment of Electrophysicsen_US
dc.identifier.wosnumberWOS:000257355300027-
Appears in Collections:Conferences Paper


Files in This Item:

  1. 000257355300027.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.