Full metadata record
DC FieldValueLanguage
dc.contributor.authorHong, JLen_US
dc.contributor.authorTeng, CCen_US
dc.date.accessioned2014-12-08T15:43:56Z-
dc.date.available2014-12-08T15:43:56Z-
dc.date.issued2001-04-15en_US
dc.identifier.issn1049-8923en_US
dc.identifier.urihttp://dx.doi.org/10.1002/rnc.556en_US
dc.identifier.urihttp://hdl.handle.net/11536/29710-
dc.description.abstractThis paper combines an alternative chain-scattering matrix description with (J, J')-lossless and a class of conjugate (- J, - J')-lossless systems to design a family of nonlinear H-infinity output feedback controllers. The present systems introduce a new chain-scattering setting, which not only offers a clearer expression for the solving process of the nonlinear H-infinity control problem but also removes the fictitious signals introduced by the traditional chain-scattering approach. The intricate nonlinear affine control problem thus can be transformed into a simple lossless network and is easy to deal with in a network-theory context. The relationship among these (J, J') systems, L-2-gain, and Hamilton-Jacobi equations is also given. Block diagrams are used to illustrate the central theme. Copyright (C) 2001 John Wiley & Sons, Ltd.en_US
dc.language.isoen_USen_US
dc.subjectnonlinear systemsen_US
dc.subjectL-2-gainen_US
dc.subjectHamilton-Jacobi equationsen_US
dc.subjectstate-space methoden_US
dc.titleH-infinity control for nonlinear affine systems: a chain-scattering matrix description approachen_US
dc.typeArticleen_US
dc.identifier.doi10.1002/rnc.556en_US
dc.identifier.journalINTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROLen_US
dc.citation.volume11en_US
dc.citation.issue4en_US
dc.citation.spage315en_US
dc.citation.epage333en_US
dc.contributor.department電控工程研究所zh_TW
dc.contributor.departmentInstitute of Electrical and Control Engineeringen_US
dc.identifier.wosnumberWOS:000167917600002-
dc.citation.woscount3-
Appears in Collections:Articles


Files in This Item:

  1. 000167917600002.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.