Full metadata record
DC FieldValueLanguage
dc.contributor.authorLi, YMen_US
dc.contributor.authorVoskoboynikov, Oen_US
dc.contributor.authorLee, CPen_US
dc.contributor.authorSze, SMen_US
dc.date.accessioned2014-12-08T15:44:23Z-
dc.date.available2014-12-08T15:44:23Z-
dc.date.issued2001en_US
dc.identifier.issn0038-1098en_US
dc.identifier.urihttp://hdl.handle.net/11536/29982-
dc.identifier.urihttp://dx.doi.org/10.1016/S0038-1098(01)00338-6en_US
dc.description.abstractWe present a theoretical study of the electron energy states in narrow gap semiconductor quantum dots (QDs). For a finite height hard-wall 3D confinement potential the problem was solved by using of the effective one electronic band Hamiltonian, the energy and position dependent electron effective mass approximation, and the Ben Daniel-Duke boundary condition. To solve the 3D Schrodinger equation, we employ a numerical scheme by using the finite difference method and the QR algorithm. Our results show that the parabolic band approximation is applicable only for relatively thin cylindrical QDs or for the dots with large radius. We show that the electron wave function localization plays an important role in the dependency of the energy and the electron effective mass. For the excited states, the non-parabolicity effect has been found to be stronger than it at ground state. (C) 2001 Elsevier Science Ltd. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectnanostructuresen_US
dc.subjectsemiconductorsen_US
dc.subjectelectronic states (localized)en_US
dc.titleEnergy and coordinate dependent effective mass and confined electron states in quantum dotsen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/S0038-1098(01)00338-6en_US
dc.identifier.journalSOLID STATE COMMUNICATIONSen_US
dc.citation.volume120en_US
dc.citation.issue2-3en_US
dc.citation.spage79en_US
dc.citation.epage83en_US
dc.contributor.department友訊交大聯合研發中心zh_TW
dc.contributor.departmentD Link NCTU Joint Res Ctren_US
dc.identifier.wosnumberWOS:000171221900006-
dc.citation.woscount26-
Appears in Collections:Articles


Files in This Item:

  1. 000171221900006.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.