完整後設資料紀錄
DC 欄位語言
dc.contributor.authorChang, GJen_US
dc.contributor.authorJuan, JSTen_US
dc.contributor.authorLiu, DDFen_US
dc.date.accessioned2014-12-08T15:44:29Z-
dc.date.available2014-12-08T15:44:29Z-
dc.date.issued2001en_US
dc.identifier.issn0895-4801en_US
dc.identifier.urihttp://hdl.handle.net/11536/30039-
dc.identifier.urihttp://dx.doi.org/10.1137/S0895480198339456en_US
dc.description.abstractGiven a nonnegative integer r, a no-hole (r + 1)-distant coloring, called N-r-coloring, of a graph G is a function that assigns a nonnegative integer (color) to each vertex such that the separation of the colors of any pair of adjacent vertices is greater than r, and the set of the colors used must be consecutive. Given r and G, the minimum N-r-span of G, nsp(r)(G), is the minimum difference of the largest and the smallest colors used in an N-r-coloring of G if there exists one; otherwise, define nsp,(G) = infinity. The values of nsp(1)(G) (r = 1) for bipartite graphs are given by Roberts [Math. Comput. Modelling, 17 (1993), pp. 139-144]. Given r greater than or equal to 2, we determine the values of nsp(r)(G) for all bipartite graph with at least r - 2 isolated vertices. This leads to complete solutions of nsp(2)(G) for bipartite graphs.en_US
dc.language.isoen_USen_US
dc.subjectvertex-coloringen_US
dc.subjectno-hole (r plus l)-distant coloringen_US
dc.subjectminimum spanen_US
dc.subjectbipartite graphsen_US
dc.titleMinimum span of no-hole (r+1)-distant coloringsen_US
dc.typeArticleen_US
dc.identifier.doi10.1137/S0895480198339456en_US
dc.identifier.journalSIAM JOURNAL ON DISCRETE MATHEMATICSen_US
dc.citation.volume14en_US
dc.citation.issue3en_US
dc.citation.spage370en_US
dc.citation.epage380en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000171372500008-
dc.citation.woscount3-
顯示於類別:期刊論文


文件中的檔案:

  1. 000171372500008.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。