Full metadata record
DC FieldValueLanguage
dc.contributor.authorShieh, Gen_US
dc.date.accessioned2014-12-08T15:44:33Z-
dc.date.available2014-12-08T15:44:33Z-
dc.date.issued2000-12-01en_US
dc.identifier.issn0006-341Xen_US
dc.identifier.urihttp://hdl.handle.net/11536/30070-
dc.description.abstractA direct extension of the approach described in Self, Mauritsen, and Ohara (1992, Biometrics 48, 31-39) for power and sample size calculations in generalized linear models is presented. The major feature of the proposed approach is that the modification accommodates both a finite and an infinite number of covariate configurations. Furthermore, for the approximation of the noncentrality of the noncentral chi-square distribution for the likelihood ratio statistic, a simplification is provided that not only reduces substantial computation but also maintains the accuracy. Simulation studies are conducted to assess the accuracy for various model configurations and covariate distributions.en_US
dc.language.isoen_USen_US
dc.subjectgeneralized linear modelsen_US
dc.subjectlikelihood ratio testen_US
dc.subjectlogistic regressionen_US
dc.subjectnoncentral chi-squareen_US
dc.subjectPoisson regressionen_US
dc.subjectsample sizeen_US
dc.subjectscore testen_US
dc.subjectstatistical poweren_US
dc.titleOn power and sample size calculations for likelihood ratio tests in generalized linear modelsen_US
dc.typeArticleen_US
dc.identifier.journalBIOMETRICSen_US
dc.citation.volume56en_US
dc.citation.issue4en_US
dc.citation.spage1192en_US
dc.citation.epage1196en_US
dc.contributor.department管理科學系zh_TW
dc.contributor.departmentDepartment of Management Scienceen_US
dc.identifier.wosnumberWOS:000165872600031-
dc.citation.woscount26-
Appears in Collections:Articles


Files in This Item:

  1. 000165872600031.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.