完整後設資料紀錄
DC 欄位語言
dc.contributor.authorLiu, JLen_US
dc.date.accessioned2014-12-08T15:44:35Z-
dc.date.available2014-12-08T15:44:35Z-
dc.date.issued2000-12-01en_US
dc.identifier.issn0096-3003en_US
dc.identifier.urihttp://dx.doi.org/10.1016/S0096-3003(99)00153-8en_US
dc.identifier.urihttp://hdl.handle.net/11536/30096-
dc.description.abstractA residual type a posteriori error estimator is presented for the least squares finite element method. The estimator is proved to equal the exact error in a norm induced by some least squares functional. The error indicator of each element is equal to the exact error norm restricted to the element as well. In other words, the estimator is perfectly effective and reliable for error control and for adaptive mesh refinement. The exactness property requires virtually no assumptions on the regularity of the solution and on the finite element order in the approximation or in the estimation. The least squares method is in a very general setting that applies to various linear boundary-value problems such as the elliptic systems of first-order and of even-order and the mixed type partial differential equations. Numerical results are given to demonstrate the exactness. (C) 2000 Elsevier Science Inc. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectexact error estimatoren_US
dc.subjectleast squares finite elementsen_US
dc.titleExact a posteriori error analysis of the least squares finite element methoden_US
dc.typeArticleen_US
dc.identifier.doi10.1016/S0096-3003(99)00153-8en_US
dc.identifier.journalAPPLIED MATHEMATICS AND COMPUTATIONen_US
dc.citation.volume116en_US
dc.citation.issue3en_US
dc.citation.spage297en_US
dc.citation.epage305en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000165431100006-
dc.citation.woscount9-
顯示於類別:期刊論文


文件中的檔案:

  1. 000165431100006.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。