Full metadata record
DC FieldValueLanguage
dc.contributor.authorShih, CWen_US
dc.contributor.authorWeng, CWen_US
dc.date.accessioned2014-12-08T15:44:38Z-
dc.date.available2014-12-08T15:44:38Z-
dc.date.issued2000-11-15en_US
dc.identifier.issn0167-2789en_US
dc.identifier.urihttp://dx.doi.org/10.1016/S0167-2789(00)00134-2en_US
dc.identifier.urihttp://hdl.handle.net/11536/30134-
dc.description.abstractThis work investigates a class of neural networks with cycle-symmetric connection strength. We shall show that, by changing the coordinates, the convergence of dynamics by Fiedler and Gedeon [Physica D 111 (1998) 288] is equivalent to the classical results. This presentation also addresses the extension of the convergence theorem to other classes of signal functions with saturations. In particular, the result of Cohen and Grossberg [IEEE Trans. Syst. Man Cybernet. SMC-13 (1983) 815] is recast and extended with a more concise verification. (C) 2000 Elsevier Science B.V. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectneural networksen_US
dc.subjectcycle-symmetric matrixen_US
dc.subjectLyapunov functionen_US
dc.subjectconvergence of dynamicsen_US
dc.titleCycle-symmetric matrices and convergent neural networksen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/S0167-2789(00)00134-2en_US
dc.identifier.journalPHYSICA Den_US
dc.citation.volume146en_US
dc.citation.issue1-4en_US
dc.citation.spage213en_US
dc.citation.epage220en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000165117000008-
dc.citation.woscount11-
Appears in Collections:Articles


Files in This Item:

  1. 000165117000008.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.