完整後設資料紀錄
DC 欄位語言
dc.contributor.authorJou, Jen_US
dc.contributor.authorYang, SYen_US
dc.date.accessioned2014-12-08T15:44:45Z-
dc.date.available2014-12-08T15:44:45Z-
dc.date.issued2000-10-06en_US
dc.identifier.issn0096-3003en_US
dc.identifier.urihttp://dx.doi.org/10.1016/S0096-3003(99)00139-3en_US
dc.identifier.urihttp://hdl.handle.net/11536/30206-
dc.description.abstractIn this paper a least-squares finite element method for the Timoshenko beam problem is proposed and analyzed. The method is shown to be convergent and stable without requiring extra smoothness of the exact solutions. For sufficiently regular exact solutions, the method achieves optimal order of convergence in the H-1-norm for all the unknowns (displacement, rotation, shear, moment), uniformly in the small parameter which is generally proportional to the ratio of thickness to length. Thus the locking phenomenon disappears as the parameter tends to zero, A sharp a posteriori error estimator which is exact in the energy norm and equivalent in the H-1-norm is also briefly discussed. (C) 2000 Published by Elsevier Science Inc. All rights reserved. AMS classification: 65N15; 65N30.en_US
dc.language.isoen_USen_US
dc.subjectTimoshenko beam problemen_US
dc.subjectleast-squaresen_US
dc.subjectfinite clement methoden_US
dc.subjectlocking phenomenonen_US
dc.subjecta posteriori error estimatoren_US
dc.titleLeast-squares finite element approximations to the Timoshenko beam problemen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/S0096-3003(99)00139-3en_US
dc.identifier.journalAPPLIED MATHEMATICS AND COMPUTATIONen_US
dc.citation.volume115en_US
dc.citation.issue1en_US
dc.citation.spage63en_US
dc.citation.epage75en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000089311200005-
dc.citation.woscount5-
顯示於類別:期刊論文


文件中的檔案:

  1. 000089311200005.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。