完整後設資料紀錄
DC 欄位語言
dc.contributor.authorChen, LFen_US
dc.contributor.authorLiao, HYMen_US
dc.contributor.authorKo, MTen_US
dc.contributor.authorLin, JCen_US
dc.contributor.authorYu, GJen_US
dc.date.accessioned2014-12-08T15:44:46Z-
dc.date.available2014-12-08T15:44:46Z-
dc.date.issued2000-10-01en_US
dc.identifier.issn0031-3203en_US
dc.identifier.urihttp://dx.doi.org/10.1016/S0031-3203(99)00139-9en_US
dc.identifier.urihttp://hdl.handle.net/11536/30219-
dc.description.abstractA new LDA-based face recognition system is presented in this papal. Linear discriminant analysis (LDA) is one of the most popular linear projection techniques for feature extraction. The major drawback of applying LDA is that it may encounter the small sample size problem. In this paper, we propose a new LDA-based technique which can solve the small sample size problem. We also prove that the most expressive vectors derived ill the null space of the within-class scatter matrix using principal component analysis (PCA) are equal to the optimal discriminant vectors derived in the: original space using LDA. The experimental results show that the new LDA process improves the performance of a face recognition system significantly. (C) 2000 Pattern Recognition Society. Published by Elsevier Science Ltd. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectface recognitionen_US
dc.subjectfeature extractionen_US
dc.subjectlinear discriminant analysisen_US
dc.subjectlinear algebraen_US
dc.titleA new LDA-based face recognition system which can solve the small sample size problemen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/S0031-3203(99)00139-9en_US
dc.identifier.journalPATTERN RECOGNITIONen_US
dc.citation.volume33en_US
dc.citation.issue10en_US
dc.citation.spage1713en_US
dc.citation.epage1726en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000088547100011-
dc.citation.woscount640-
顯示於類別:期刊論文


文件中的檔案:

  1. 000088547100011.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。