完整後設資料紀錄
DC 欄位語言
dc.contributor.authorFan, JQen_US
dc.contributor.authorHung, HNen_US
dc.contributor.authorWong, WHen_US
dc.date.accessioned2014-12-08T15:44:50Z-
dc.date.available2014-12-08T15:44:50Z-
dc.date.issued2000-09-01en_US
dc.identifier.issn0162-1459en_US
dc.identifier.urihttp://hdl.handle.net/11536/30259-
dc.description.abstractIt is well known that twice a log-likelihood ratio statistic follows asymptotically a chi-square distribution. The result is usually understood and proved via Taylor's expansions of likelihood functions and by assuming asymptotic normality of maximum likelihood estimators (MLEs). We obtain more general results by using a different approach the Wilks type of results hold as long as likelihood contour sets are fan-shaped. The classical Wilks theorem corresponds to the situations in which the likelihood contour sets are ellipsoidal. This provides a geometric understanding and a useful extension of the likelihood ratio theory. As a result, even if the MLEs are not asymptotically normal, the likelihood ratio statistics can still be asymptotically chi-square distributed. Our technical arguments are simple and easily understood.en_US
dc.language.isoen_USen_US
dc.titleGeometric understanding of likelihood ratio statisticsen_US
dc.typeArticleen_US
dc.identifier.journalJOURNAL OF THE AMERICAN STATISTICAL ASSOCIATIONen_US
dc.citation.volume95en_US
dc.citation.issue451en_US
dc.citation.spage836en_US
dc.citation.epage841en_US
dc.contributor.department統計學研究所zh_TW
dc.contributor.departmentInstitute of Statisticsen_US
dc.identifier.wosnumberWOS:000165591200023-
dc.citation.woscount7-
顯示於類別:期刊論文


文件中的檔案:

  1. 000165591200023.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。